High Temperature Oxidation Performance of Aluminide Coatings
نویسندگان
چکیده
In order to determine the potential benefits and limitations of aluminide coatings, coatings made by chemical vapor deposition (CVD) on Feand Ni-base alloy substrates are being evaluated in various hightemperature environments. Testing of coatings on representative ferritic (Fe-9Cr-1Mo) and austenitic (type 304L stainless steel) alloys has found that high frequency thermal cycling (1h cycle time) can significantly degrade the coating. Based on comparison with similar specimens with no thermal cycling or a longer cycle time (100h), this degradation was not due to Al loss from the coating but most likely because of the thermal expansion mismatch between the coating and the substrate. Several coated Ni-base alloys were tested in a high pressure (20atm) steam-CO2 environment for the ZEST (zero-emission steam turbine) program. Coated specimens showed less mass loss than the uncoated specimens after 1000h at 900°C and preliminary characterization examined the post-test coating structure and extent of attack. INTRODUCTION Aluminide coatings are of interest for many high temperature applications because of the possibility of improving the oxidation resistance of structural alloys by forming a protective external alumina scale.1-5 Steam and exhaust gas environments are of particular interest because alumina is less susceptible to the accelerated attack due to hydroxide formation observed for chromiaand silica-forming alloys and ceramics.6-13 For water vapor testing, one ferritic (Fe-9Cr-1Mo) and one austenitic alloy (304L) have been selected as substrate materials and CVD coatings have been used in order to have a well-controlled, high purity coating. It is anticipated that similar aluminide coatings could be made by a higher-volume, commercial process such as pack cementation. Previous work on this program has examined as-deposited coatings made by high and low Al activity CVD processes and the short-term performance of these coatings.5,14,15 The current work is focusing on the long term behavior in both diffusion tests16 and oxidation tests of the thicker, high Al activity coatings. For long-term coating durability, one area of concern has been the coefficient of thermal expansion (CTE) mismatch between coating and substrate.5 This difference could cause cracking or deformation that could reduce coating life. Corrosion testing using thermal cycling is of particular interest because of this potential problem and results are presented where a short exposure cycle (1h) severely degraded aluminide coatings on both types of substrates. To further study the potential role of aluminide coatings in fossil energy applications, several high creep strength Ni-base alloys were coated by CVD for testing in a high pressure (20atm) steam-CO2 environment for the ZEST (zero-emission steam turbine) program. Such alloys would be needed as
منابع مشابه
Nickel Base Superalloy Rene®80 – The Effect of High Temperature Cyclic Oxidation on Platinum-Aluminide Coating Features
Nickel base superalloy alloys are used in the manufacture of gas turbine engine components, which in use are exposed to high temperatures and corrosive environments. The platinum aluminide coatings described here have been developed to protect nickel base superalloy alloys from oxidation. In this study, the effect of cyclic oxidation, platinum layer thickness and aluminizing process on beha...
متن کاملFormation and Evaluation of Oxidation Behavior of Zirconia- Aluminide Coating on Nickel- Based Alloy
Practical applications of thermal barrier coatings with aluminide bond-coats are limited due to oxide scale spallation of the aluminide coating under applied thermal stresses. Considering the positive effects of oxygen-active elements or their oxides on the high temperature oxidation behavior, in this research zirconia was introduced into an aluminide coating. For this purpose, a Watts type bat...
متن کاملAluminide Coatings for Power Generation Applications
In order to form model aluminide coatings for studying critical issues related to their high temperature oxidation and corrosion performance, a laboratory chemical vapor deposition (CVD) procedure is being used to more rigorously control the coating process in terms of composition, purity and microstructure. One ferritic (Fe-9Cr1Mo) and one austenitic alloy (304L) were selected as substrate mat...
متن کاملHigh-temperature Corrosion Behavior of Iron Aluminide Alloys and Coatings
A multi-year effort has been focused on optimizing the long-term oxidation performance of ingot-processed (IP) and oxide-dispersion strengthened (ODS) Fe3Al and iron aluminidebased coatings. Based on results from several composition iterations, a Hf-doped alloy (Fe28Al-2Cr-0.05at.%Hf) has been developed with significantly better high temperature oxidation resistance than other iron aluminides. ...
متن کاملMicrostructure and Properties of Iron Aluminide Coatings
Corrosion-resistant coatings based on the iron aluminide intermetallic compound Fe3Al are currently being investigated for fossil energy applications. Fe3Al possesses excellent intrinsic high-temperature oxidation and sulfidation resistance, and a significant effort has been made in the development of bulk alloys based on it. While substantial progress has been made, the widespread use of these...
متن کامل